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Abstract

Although ANCOVA is used fairly infrequently in published research,

the method is used much more frequently in dissertations and in

evaluation research. The purpose of this paper is to review the

assumptions that must be met for ANCOVA to yield useful results,

and to argue that ANCOVA will yield distorted and inaccurate

results when these assumptions are violated. Numerous examples and

Venn diagrams are used to make the discussion concrete and more

accessible to the nontechnical reader.



Analysis of covariance (ANCOVA) is useful in very limited

situations and thus is not employed with great frequency within the

behavioral sciences literature (Elmore & Woehlke, 1988; Gaither &

Glorfeld, 1985; Goodwin & Goodwin, 1985). However, due to the

promise of "control" and "power", some researchers, especially

doctoral students (Thompson, 1988), erroneously believe that ANCOVA

always provides "control" and more power against Type II error.

This misconception accounts for some of the continued use of this

method even in cases in which the method is not appropriate.

ANCOVA purports to be a method of "leveling" groups or

statistically removing from dependent variable variance the effects

of a continuous extraneous variable or variables so that treatment

effects can be clarified and the probability of obtaining

statistically significant results will be increased (Shavelson,

1981, p. 530; Wildt & Ahtola, 1978), Huitema (1980, p. 13) cites

two advantages of ANCOVA: (a) ANCOVA generally has greater power

against Type II error than analysis of variance (ANOVA); and (b)

ANCOVA reduces the bias caused by variations between experimental

groups existing before the treatment was administered. Cliff

(1987, p. 272) portrays these advantages in a different light when

he says that (a) ANCOVA "tries" to enhance the relationship between

dependent and independent variables and (b) ANCOVA "attempts" to

correct for extraneous differences and to rule out alternative

explanations for findings.

These prospective promises and ANCOVA's favorable treatment

in Handbook of Research on Teaching (Campbell & Stanley, 1963) have
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caused a generation of less informed researchers to regard this

method as a statistical panacea that answers many research

problems. Unfortunately, the limitations of ANCOVA are not

recognized until these apparent advent:ages are explored

thoughtfully and in detail. Explanation of ANCOVA's severe

limitations does not appear until later in the chapter in which

Shavelson (1981, p. 537) explains the method, in subsequent

chapters six and seven of Huitema (1980, pp. 98-156), or in the

case of Campbell and Stanley (1963), problems with the use of

ANCOVA were not elaborated until a subsequent publication (Campbell

& Erleba,...her, 1975).

Because of the delay in pointing out problems, and in some

cases due to seeming trivialization of the problems accomplished

by presenting the assumptions of the methods almost as

afterthoughts, ANCOVA procedures are still used inappropriately.

The purpose of this paper is to argue that ANCOVA is rarely useful,

for reasons that Campbell and Erlebacher (1975) forcefully argue

in their subsequent recant. The importance of testing the data set

to determine if ANCOVA procedures are appropriate is emphasized.

Conditions Required for Correct ANCOVA Usage

Instead of initially emphasizing the possible benefits derived

in those cases in which ANCOVA is indeed appropriate, it might be

best to first state the assumptions underlying the successful use

of ANCOVA:
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1. The covariate (or covariates) should be an independent

variable highly correlated with the dependent variable.

2. The covariate should be uncorrelated with the independent

variable or variables.

3. With respect to the dependent variable, (a) the

residualized dependent variable (Ye) is assumed to be

normally distributed for each level of the independent

variable, and (b) the variances of the residualized

dependent variable (f) for each level of the independent

variable are assumed to be equal.

4. The covariate and the dependent variable must have a

linear relationship, at least in conventional ANCOVA

analyses.

5. The regression slopes between covariate and independent

variable must be parallel for each independent variable

group.

With these limitations (Huitema, 1980, Ch. 6) in mind, it seems

that the procedure would have limited value, which is probably

true. However, in the few cases in which the procedure can be

correctly employed, the procedure does have the generally presumed

benefits.

The ANCOVA procedure is actually a regression of the dependent

variable with the covariate, and then an ANOVA is computed on the

adjusted (residual or error) scores on the dependent variable, as

illustrated by Thompson (1989). The "correction" of the dependent

variable scores is seen by some as a device to adjust for all kinds
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of problems with random assignment, but very few data sets can meet

the very specific requirements that make the adjustment

appropriate. And, as pointed out by Campbell and Erlebacher (1975,

p. 613), "The more one needs the 'controls' and 'adjustments' which

these statistics seem to offer, the more biased are their

outcomes." Thompson (1989) notes that the inappropriate use of

ANCOVA almost resulted in the termination of major compensatory

federal education funding and also stimulated the development of

the qualitative research paradigm.

Condition 1

Condition 1 requires a "high" correlation between the

covariate (X) and the dependent variable (Y). If the correlation

is not high, the covariate will do little to reduce the error sum

of squares, and this is the primary objective of ANCOVA. To

illustrate this point, Table 1 presents three keyouts for results

involving a single data set and one independent variable with three

levels. Keyout (a) illustrates a regular ANOVA without a

covariate, keyout (b) presents an ANCOVA in which the covariate (X)

has a smaller correlation with the dependent variable (r2 15/100

= .15 = 15%), and keyout (c) illustrates an ANCOVA involving a

covariate with a larger correlation (r4 = 30/100 = .30 = 30%) with

the dependent variable. The treatment effects (SOS explained = 15)

are constant across the analyses, because for this example the

covariate is perfectly uncorrelated with the treatment conditions,

thus the use of the covariate does rot impinge at all on the effect
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size involving the treatment and the dependent variable (eta2

15/100 = .15 15).

INSERT TABLE 1 ABOUT HERE.

The change from not rejecting the null (Ho) for Table 1

keyouts (a) and (b) to rejecting the treatment effect Ho in keyout

(c) is due to the reduction of the sum of squares error when the

covariance adjustment is made when the covariate has the larger

correlation (r2 = 30%) with the dependent variable. However,

notice that the use of the covariate also causes the loss of one

degree of freedom (df) for each covariate, which in and of itself

tends to lead to a larger mean square (MS) error, and thus larger

calculated E values. The change in degrees of freedom also leads

to a corresponding increase in the critical E used to test the

intervention hypothesis, e.g., from 3.35 to 3.37.

In many cases, the decrease in error sum of squares more than

compensates for the loss of degrees of freedom in error. But this

is not always the case. For example, if the covariate is perfectly

uncorrelated with the dependent .:friable, then (a) the sum of

squares error will remain totally unchanged after the covariance

adjustment, (b) degrees of freedom error will be decreased by one

for each covariate, (c) mean square error will then be larger, and

(d) f calculated will then become smaller, making it less likely

to get statistical significance. Critical f values will change as

well, as illustrated in the Table 1 example.

Figure 1 uses Venn diagrams to illustrate these dynamics. The
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circle in (a) represents the total sum of squares on the dependent

variable. The diagram in (b) shows a covariate (X) with a fairly

small correlation (r2 = 15%) with the dependent variable (Y) and no

correlation between X and the treatment variable. Diagram (c)

shows a covariate (X) with a higher correlation (72 = 30%) with Y.

The sum of squares residual after the covariance adjustment is

further reduced in this analysis, thanks to the higher correlation

between X and Y. The more "pie" (sum of squares total) that is

consumed by the covariate regression, the smaller the sum of

squares error becomes, as long as X and the treatment variable are

perfectly uncorrelated (and thus do not overlap in the Venn

diagram). This situation makes the mean square err-r smaller and

helps yield significant treatment effects because the smaller mean

square error then ultimately leads to larger calculated E values

for treatment effects.

INSERT FIGURE 1 ABOUT HERE.

ConditJon 2

Condition 2 requires the covariates and the independent

variables to be perfectly uncorrelated, as they were in the

previous examples. The best way to illustrate this is with the

Venn diagram in Figure 2. The desired situation is (a) where the

covariate (X) and the independent variable are perfectly

uncorrelated and thus explain different portion.3 of the total

variance of the dependent variable. In other words, they "eat
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different parts of the sum of squares (SOS) pie." In (b) the

covariate (X) and the treatment variable are somewhat correlated.

In this case, because the covariance adjustment is made first in

ANCOVA, all of the sum of squares explained by both X (15) and the

treatment variable (10) will be attributed solely to the covariate.

In this cat,e the estimated treatment effects will be reduced (15

10 = 5).

INSERT FIGURE 2 ABOUT HERE.

Part (c) of Figure 2 presents the worst possible case, since

the covariate explains all the sum of squares total also predicted

by the treatment variable. The effect of the treatment is

obfuscated by the covariate causing confusion regarding the effects

of the iatervention. The researcher in this case would erroneously

conclude that the treatment had no effect whatsoever (15 - 15 = 0).

Condition 3

The first aspect of Condition 3 assumes a normal distribution

of the residuali'A.ed dependent variable (Ye = Y YHAT = Y (a +

bX)) for each independent variable group. ANCOVA is apparently more

sensitive to the violation of this distribution assumption than is

ANOVA. However, if the covariate (X) is normally distributed,

ANCOVA is reasonably robust to the violation of this assumption

(Huitema, 1980, p. 117).

The seconki aspect of Condition 3 assumes that variances of the

residualized dependent variable (Y*) are assumed to be equal for
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each independent variable group. If sample sizes are equal and

random, this requirement is usually met. This requirement is

illustrated graphically in Figure 3.

INSERT FIGURE 3 ABOUT HERE.

The fourth requirement concerns the regression analysis used

to "correct" or "adjust" the dependent variable (Y) scores using

the covariate (X). A regression assumes a straight line, i.e.,

linear relationship between (Y) and (X) for each level of the

dependent variable. The regression line is the best representation

of the relation ship between (Y) and (X) in the sense that the "best

fit" regression line minimizes mean square error. The regression

line can be used to predict (Y) from (X) using the straight line

equatior;

= a + b(Xi)

where, b = slope of the regression line,

Xi = the score on X of any given individual, and

a = the Y intercept of the regression line when X = O.

A straight line relationship between dependent variable and

covariate means that the relationship does not change at some point

on the covariate, i.e., that the relationship is constant within

the range of the two variables tested. Thus, a change in magnitude

on X is presumed to cause a proportional change on Y at each lcvel

of X. This condition is extremely important if the ANCOVA

adjustment is not to bias the data set. Figure 4 illustrates how
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a scatterplot for Y and X scores in each independent variable group

can indicate or contraindicate linearity of the relationship

between the dependent variable and the covariate.

INSERT FIGURE 4 ABOUT HERE.

condition 5

The use of ANCOVA requires that the regression slopes (b) of

the dependent variable Y versus the covariate (X) be equal for each

level of the independent variable. This "homogeneity of

regression" condition indicates that the relationship between the

dependent variable Y and the covariate X is constant for all levels

of the independent variable. Any adjustment in the covariate (X)

will result in the same proportionate adjustment in the dependent

variable (Y) for each level of the independent variable. If the

regression slopes are equal, a single pooled regression slope may

be used for all groups to calculate the solicited adjustments in

the dependent variable (Y) . For example, for a one-way three-level

ANCOVA the assumption is:

b pooled = b group 1 = b group 2= b group 3

The test for homogeneity of regression slopes is based on the

concept that each regression line produces the least sum of squares

error (Y) for each level of the independent variable. The pooled

regression line totally ignores the level of the independent

variable during the statistical adjustments invoked by the

regression procedure. The slopes are homogeneous if the residual

sums of squares from separate regression analyses equal the
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residual sum of squares produced by a pooled regression equation

developed by ignoring group membership on other independent

variables.

An E test can be computed to test the homogeneity of

regression to determine if the difference in the slopes across

groups is statistically significant and the slopes are not equal.

If this proves to be the case, ANCOVA is not appropriate for the

data set. But as vitally as important as the homogeneity of

regression assumption is, Willson (1982, p. 6) found that "few

(published] studies using straight ANCOVA tested for homogeneity."

Thompson (1988) found the same thing with respect to doctoral

dissertations. Figure 5 illustrates three examples of the pooled

regression.

INSERT FIGURE 5 ABOUT HERE.

The ANCOVA Correction

If the regression lines for the depenC,Int variable versus the

covariate are parallel for each level of the independent variable,

the correction can be determined from the graph from the mean of

the pooled regression equation. The point where this mean

intersects the regression line for each independent variable level

will become the new adjusted dependent variable mean. All Y scores

in each level will be accordingly adjusted into new Y* scores which

are then sub;; toted to an ANOVA (Thompson, 1989).

This should make it clear why homogeneity of regression is
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important. The adjustment of Y to the mean of X is proportional

for each regression line. Without that relationship, the adjusted

(I') would change with respect to the level of the independent

variable at each level of X. The mathematical expression for

calculating the adjusted scores, Y", assumes a straight line

relationship between X and Y, and a common slope for the single,

corrective, "pooled" regression equation across groups. Since a

single regression equation is used to correct all Y scores,

regardless of independent variable groups, if the "pooled" or

"averaged" single equation does not accurately describe the Y and

X relationship in a given group, the corrections producing the

residual Y scores, Y* (Y TEAT = Y - (a + bZ)), will actually bias

the data rather than Incorrectly them.

The expression for formulating corrected group means (Huitema,

1980, p. 32) is:

Ymean j = Ymeanj - pooled b (Xmeanj - X grand mean),

where

pooled b = pooled slope of the XI regression line developed

by ignoring group membership on the independent

variable(s), and

j = level or group on independent variable.

Adjusting scores of data in which the homogeneity of regression

requirement is not met changes the relationship of the levels to

each other and completely muddles the data.

summary
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ANCOVA is perceived by some researchers to be a miracle method

that magically produces correct statistical control and always

yields greater power against Type II error. Unfortunately, these

benefits are not always realized and ANCOVA must be used with

considerable caution. In addition to normal statistical

assumptions for ANOVA and regression procedures, ANCOVA data sets

must meet other stringent requirements.

For ANCOVA to provide meaningful statistical control, and not

obscure or mislead, extreme caution must be used to ascertain that

the data set fulfills these several requirements, especially those

pertaining to the homogeneity of regression slopes. For ANCOVA to

increase power against a Type II error, there must be a high

correlation between the covariate and the dependent variable and

no correlation between the covariate and the independent variable.

Thus, readers of ANCOVA results should carefully examine research

studies for reports of evidence that these requirements were met.

And ANCOVA practitioners should thoughtfully examine their data

sets to insure that ANCOVA is an appropriate analytic method,

rather than a method that for a given data set will generate more

problems that the analysis actually solves.
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Table 1

Three Keyouts for Three-level One-way Design (n=30)

(a) ANOVA -- treatment Ho not rejected

Source SOS dF MS Fcalc Fcrit Effect size

Treatment 15 2 7.5 2.3825 3.35 .15

Error 85 27 3.1481

Total (Y) 100 29

(b) ANCOVA with smaller correlation between X and Y and zero
correlation between X and treatment-- treatment Ho not rejected

Source SOS dF MS Fcalc Fcrit Effect size

Covariate (X) 15 1 15 5.5714 4.22 .15

Treatment 15 2 7.5 2.7857 3.37 .15

Error 70 26 2.6923

Total (Y) 100 29

(c) ANCOVA with higher correlation between X and Y and zero
correlation between X and treatmenttreatment Ho rejected

Source SOS dF MS Fcalc Fcrit Effect size

Covariate (X) 30 1 30 14.1817 4.22 .30

Treatment 15 2 7.5 3.5455 3.37 .15

Error 55 26 2.1154

Total (Y) 100 29
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Figure 1. Three Venn Diagrams Illustrating the Reduction of SOS
with ANCOVA

(a) ANOVA without a covariate,
SOStrt explains .15 of SOS,,

(b) ANCOVA with covariate (X)
that explains a unique .15
of SOS

Y

(c) ANCOVA with covariate (X)
that explains a unique .30
of SOS

Y
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Figure 2. Venn Diagrams Illustrating the Necessity for the
Covariate and the Treatment to be Uncorrelated

Source SOS df MS Fcalc Fcrit Eff Size

Covariate 30 1 30.00 14.18 4.22 .30
Treatment 15 2 7.50 3.54 3.37 .15
Error 55 26 2.12
Total 100 29

(a) Treatment and covariate (X) uncorrelated

Source SOS df MS Fcalc Fcrit Eff Size

Covariate 30 1 30.00 12.00 4.22 .30
Treatment 5 2 2.50 1.00 3.37 .05
Error 65 26 2.50
Total 100 29

(b) Treatment and covariate (X) partially correlated

Source SOS df MS Fcalc Fcrit Eff Size

Covariate 30 1 30.00 11.14 4.22 .30
Treatment 0 2 0.00 ---- 3.37 .00
Error 70 26 2.69
Total 100 29

(c) Covariate subsumes Treatment SOS
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Figure 3. Illustrations of Normal Distribution and
Homogeneity of Variance Assumptions

(a) The residualized dependent variable (Ye) has a normal
distribution within each treatment group

//trr 1

Trt 7
Tr t 3

X

(b) The residualized dependent variable (Ye) has equal variances
for each treatment group at each level

X
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Figure 4. Illustrations of Requirement that Y and Covariate (X)
be Linearly Related

(a) Data points probably not suited for ANCOVA

X

(b) Data points that define straight lines
that would be suitable for this ANCOVA assumption

X



Figure 5. Illustration of Various Slopes Across Treatment Groups

(a) Slopes are equal, means of Y are very close

Trt lo Trt 2 Trt 3

X

(b) Slopes are not equal, and any adjustment using X
would bias the data

X

3

(c) Slopes are equal, means of Y are separated

X
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